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Abstract. As multicore systems continue to gain ground in the High
Performance Computing world, linear algebra algorithms have to be re-
formulated or new algorithms have to be developed in order to take ad-
vantage of the architectural features on these new processors. Fine grain
parallelism becomes a major requirement and introduces the necessity
of loose synchronization in the parallel execution of an operation. This
paper presents an algorithm for the QR factorization where the opera-
tions can be represented as a sequence of small tasks that operate on
square blocks of data. These tasks can be dynamically scheduled for exe-
cution based on the dependencies among them and on the availability of
computational resources. Compared to the standard approach, say with
LAPACK, may result in an out of order execution of the tasks which
will completely hide the presence of intrinsically sequential tasks in the
factorization. Performance comparisons are presented with the LAPACK
algorithm for QR factorization where parallelism can only be exploited
at the level of the BLAS operations.

1 Introduction

In the last twenty years, microprocessor manufacturers have been driven to-
wards higher performance rates only by the exploitation of higher degrees of
Instruction Level Parallelism (ILP). Based on this approach, several generations
of processors have been built where clock frequencies were higher and higher
and pipelines were deeper and deeper. As a result, applications could benefit
from these innovations and achieve higher performance simply by relying on
compilers that could efficiently exploit ILP. Due to a number of physical limi-
tations (mostly power consumption and heat dissipation) this approach cannot
be pushed any further. For this reason, chip designers have moved their focus
from ILP to Thread Level Parallelism (TLP) where higher performance can be
achieved by replicating execution units (or cores) on the die while keeping the
clock rates in a range where power consumption and heat dissipation do not
represent a problem. It is easy to imagine that multicore technologies will have a
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deep impact on the High Performance Computing (HPC) world since supercom-
puters have very high number of processors and, thus, multicore technologies
can help reducing the power consumption.

As a consequence, all the applications that were not explicitly coded to be
run on parallel architectures must be rewritten with parallelism in mind. Also,
those applications that could exploit parallelism may need considerable rework
in order to take advantage of the fine-grain parallelism features provided by
multicores.

The current set of multicore chips from Intel and AMD are for the most part
multiple processors glued together on the same chip. There are many scalability
issues to this approach and it is unlikely that type of architecture will scale up
beyond 8 or 16 cores. Even though it is not yet clear how chip designers are going
to address these issues, it is possible to identify some properties that algorithms
must have in order to match high degrees of TLP:

fine granularity: cores are (and probably will be) associated with relatively
small local memories (either caches or explicitly managed memories like in
the case of the STI Cell [1] architecture or the Intel Polaris[2] prototype).
This requires splitting an operation into tasks that operate on small portions
of data in order to reduce bus traffic and improve data locality.

asynchronicity: as the degree of TLP grows and granularity of the operations
becomes smaller, the presence of synchronization points in a parallel execu-
tion seriously affects the efficiency of an algorithm.

The LAPACK [3] and ScaLAPACK [4] software libraries represent a de facto
standard for high performance dense Linear Algebra computations and have
been developed, respectively, for shared-memory and distributed-memory archi-
tectures.

Substantially, both LAPACK and ScaLAPACK implement sequential algo-
rithms that rely on parallel building blocks, i.e. parallel BLAS operations. As
multicore systems require finer granularity and higher asynchronicity, consider-
able advantages may be obtained by reformulating old algorithms or developing
new algorithms in a way that their implementation can be easily mapped on
these new architectures.

A number of approaches along these lines have been proposed in [5,6,7,8,9];
block partitioning and hybrid data structures have been studied and significant
gains can be obtained on more conventional processors either in shared or dis-
tributed memory environments. The more recent work has focused on looking at
operations of the standard LAPACK algorithms for some common factorizations
are broken into sequences of smaller tasks in order to achieve finer granularity
and higher flexibility in the scheduling of tasks to cores. The importance of fine
granularity algorithms is also shown in [10].

The rest of this document shows how this can be achieved for the QR factor-
ization. Section 2 describes the tiled QR factorization that provides both fine
granularity and high level of asynchronicity; performance results for this algo-
rithm are shown in Section 3.
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2 Tiled QR Factorization

The kernels (e.g. BLAS operations) on which common Linear Algebra are based
can be broken into smaller tasks to achieve finer granularity. These tasks can
thus be scheduled according to a dynamic, graph driven approach that leads to
an out-of-order, asynchronous execution. These ideas are not new and have been
proposed a number of times in the past [11,12,13,14]. More recent work in this di-
rection show how this idea can be applied to common Linear Algebra operations
as SYRK (symmetric rank-K update), Cholesky, block LU, and block QR fac-
torizations [5,7,6] for multicore. In the case of SYRK and CHOL, no algorithmic
change is needed, since both these operations can be naturally “tiled” to achieve
a very fine granularity. A good summary of recursive and blocked approaches
can be found in [8,15] (Sections 5 and 6). Kurzak et al. [5] recently showed that
the application of this approach to the standard LAPACK algorithms for LU
and QR is limited by the granularity that can be obtained by simply “tiling”
the elementary operations that these two factorizations are based on. In order to
achieve finer granularity in the LU and QR factorizations, a major algorithmic
change is needed.

The algorithmic change we propose is actually well-known and takes its roots
in updating factorizations [16,17]. Using updating techniques to tile the algo-
rithms have first1 been proposed by Yip [18] for LU to improve the efficiency
of out-of-core solvers, and were recently reintroduced in [19,20] for LU and QR,
once more in the out-of-core context. A similar idea has also been proposed
in [21] for Hessenberg reduction in the parallel distributed context.

All of these approaches use the idea of manipulating and operating on the
coefficient matrix by referencing small blocks of the matrix [22]. The block or-
ganization is a convenient way of expressing and moving parts of the matrix
through the memory hierarchy.

The originality of this paper is to study the effectiveness of these algorithms
in the context of multicore architectures where they can be used to achieve a
fine granularity, high degree of parallelism and asynchronous execution.

2.1 A Fine-Grain Algorithm for QR Factorization

The tiled QR factorization will be constructed based on the following four ele-
mentary operations:

DGEQT2. This subroutine was developed to perform the unblocked factorization
of a diagonal block Akk of size b × b. This operation produces an upper
triangular matrix Rkk, a unit lower triangular matrix Vkk that contains b
Householder reflectors and an upper triangular matrix Tkk as defined by the
“WY” technique for accumulating the transformations (see [23], [24] and [25]
for details). Note that both Rkk and Vkk can be written on the memory area
that was used for Akk and, thus, no extra storage is needed for them. A
temporary work space is needed to store Tkk.

1 To our knowledge.
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H1H2 . . . Hb = I − V TV T

where V is an n-by-b matrix whose columns are the individual vectors
v1, v2, . . . , vb associated with the Householder matrices H1, H2, . . . , Hb, and
T is an upper triangular matrix of order b.
Thus, DGEQT2(Akk, Tkk) performs

Akk ←− Vkk, Rkk Tkk ←− Tkk

DLARFB. This LAPACK subroutine will be used to apply the transformation
(Vkk, Tkk) computed by subroutine DGEQT2 to a block Akj .
Thus, DLARFB(Akj, Vkk, Tkk) performs

Akj ←− (I − VkkTkkV T
kk)Akj

DTSQT2. This subroutine was developed to perform the unblocked QR factoriza-
tion of a matrix that is formed by coupling an upper triangular block Rkk

with a square block Aik. This subroutine will return an upper triangular
matrix R̃kk which will overwrite Rkk and b Householder reflectors where b is
the block size. Note that, since Rkk is upper triangular, the resulting House-
holder reflectors can be represented as an identity block I on top of a square
block Vik. For this reason no extra storage is needed for the Householder vec-
tors since the identity block need not be stored and Vik can overwrite Aik.
Also a matrix Tik is produced for which storage space has to be allocated.
See Figure 1 for a graphical representation.

Then, DTSQT2(Rkk, Aik, Tik) performs
(

Rkk

Aik

)
←−

(
I

Vik

)
, R̃kk Tik ←− Tik

DSSRFB. This subroutine was developed to apply the transformation computed
by DTSQT2 to a matrix formed coupling two square blocks Akj and Aij .

Thus, DSSRFB(Akj, Aij , Vik, Tik) performs
(

Akj

Aij

)
←−

(
I −

(
I

Vik

)
·(Tik)· (I V T

ik )
) (

Akj

Aij

)

All of this elementary operations rely on BLAS subroutines to perform internal
computations.

Assuming a matrix A of size pb × qb where b is the block size and each Aij is
of size b × b, the QR factorization can be performed as in Algorithm 1.

The operations count for Algorithm 1 is 25% higher than the one of the
LAPACK algorithm for QR factorization; specifically the tiled algorithm requires
5/2n2(m−n/3) floating point operations compared to the 4/2n2(m−n/3) for the
LAPACK algorithm. Details of the operation count of the parallel tiled algorithm
are reported in [26]. Performance results in Section 3 will demonstrate that it is
worth paying this cost for the sake of scaling.
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Algorithm 1. The block algorithm for QR factorization.
1: for k = 1, 2..., min(p, q) do
2: DGEQT2(Akk, Tkk);
3: for j = k + 1, k + 2, ..., q do
4: DLARFB(Akj , Vkk, Tkk);
5: end for
6: for i = k + 1, k + 1, ..., p do
7: DTSQT2(Rkk, Aik, Tik);
8: for j = k + 1, k + 2, ..., q do
9: DSSRFB(Akj , Aij , Vik, Tik);

10: end for
11: end for
12: end for

Figure 1 gives a graphical representation of one repetition (with k = 1) of the
outer loop in Algorithm 1 with p = q = 3. The red, thick borders show what blocks
in the matrix are being read and the light blue fill shows what blocks are being
written in a step. The Tkk matrices are not shown in this figure for clarity purposes.

2.2 Graph Driven Asynchronous Execution

Following the approach presented in [5,6], Algorithm 1 can be represented as a
Directed Acyclic Graph (DAG) where nodes are elementary tasks that operate
on b×b blocks and where edges represent the dependencies among them. Figure 2
show the DAG when Algorithm 1 is executed on a matrix with p = q = 3. It can
be noted that the DAG has a recursive structure and, thus, if p1 ≥ p2 and q1 ≥ q2
then the DAG for a matrix of size p2 × q2 is a subgraph of the DAG for a matrix
of size p1 × q1. This property also holds for most of the algorithms in LAPACK.

Once the DAG is known, the tasks can be scheduled asynchronously and
independently as long as the dependencies are not violated. A critical path can
be identified in the DAG as the path that connects all the nodes that have the
higher number of outgoing edges. Based on this observation, a scheduling policy
can be used, where higher priority is assigned to those nodes that lie on the
critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQT2 subroutine have the highest priority and
then three other priority levels can be defined for DTSQT2, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle time
is almost completely eliminated since only very loose synchronization is required
between the threads. The graph driven execution also provides some degree of
adaptivity since tasks are scheduled to threads depending on the availability of
execution units.

2.3 Block Data Layout

The major limitation of performing very fine grain computations, is that the
BLAS library generally have very poor performance on small blocks. This
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Fig. 1. Graphical representation of one repetition of the outer loop in Algorithm 1 on
a matrix with p = q = 3. As expected the picture is very similar to the out-of-core
algorithm presented in [20].

Fig. 2. The dependency graph of Algorithm 1 on a matrix with p = q = 3
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situation can be considerably improved by storing matrices in Block Data Lay-
out (BDL) instead of the Column Major Format that is the standard storage
format for FORTRAN arrays.

In BDL a matrix is split into blocks and each block is stored into contiguous
memory locations. Each block is stored in Column Major Format and blocks
are stored in Column Major Format with respect to each other. As a result the
access pattern to memory is more regular and BLAS performance is considerably
improved. The benefits of BDL have been extensively studied in the past, for
example in [22], and recent studies like [7] demonstrate how fine-granularity
parallel algorithms can benefit from BDL. It is important to note that both [22]
and [7] focus on algorithms that are based on the same approach presented here.

3 Performance Results

The performance of the tiled QR factorization with dynamic scheduling of tasks
has been measured on the systems listed in Table 1 and compared to the per-
formance of the fork-join approach, i.e., the standard algorithm for block QR
factorization of LAPACK associated with multithreaded BLAS.

Table 1. Details of the systems used for the following performance results

8-way dual Opteron 2-way quad Clovertown
Architecture Dual-Core AMD Intel R©Xeon R©CPU

OpteronTM8214 X5355
Clock speed 2.2 GHz 2.66 GHz
# cores 8 × 2 = 16 2 × 4 = 8
Peak performance 70.4 Gflop/s 85.12 Gflop/s
Memory 62 GB 16 GB
Compiler suite Intel 9.1 Intel 9.1
BLAS libraries MKL-9.1 MKL-9.1

Figures 3, 4 report the performance of the QR factorization for both the block
algorithm with dynamic scheduling and the LAPACK algorithm with multi-
threaded BLAS. A block size of 200 has been used for the block algorithm while
the block size for the LAPACK algorithm2 has been tuned in order to achieve the
best performance for all the combinations of architecture and BLAS library.

In each graph, two curves are reported for the block algorithm with dynamic
scheduling; the solid curve shows its relative performance when the operation
count is assumed equal to the one of the LAPACK algorithm (i.e. 4/2n2(m−n/3))
while the dashed curve shows its “raw” performance, i.e. the actual flop rate com-
puted with the exact operation count for this algorithm that is 5/2n2(m − n/3).
As already mentioned, the “raw performance” (dashed curve) is 25% higher than
the relative performance (solid curve).
2 The block size in the LAPACK algorithm sets the width of the so called panel factor-

ization which determines the ratio between Level-2 and Level-3 BLAS operations.
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The graphs on the left part of each figure show the performance measured
using the maximum number of cores available on each system with respect to
the problem size. The graphs on the right part of each figure show the weak
scalability, i.e. the flop rates versus the number of cores when the local problem
size is kept constant (nloc=5,000) as the number of cores increases. Figures 3, 4
show that, despite the higher operation count, the block algorithm with dynamic
scheduling is capable of completing the QR factorization in less time than the
LAPACK algorithm when the parallelism degree is high enough that the benefits
of the asynchronous execution overcome the penalty of the extra flops. For lower
numbers of cores, in fact, the fork-join approach has a good scalability and

Fig. 3. Comparison between the performance of the block algorithm with dynamic
scheduling using MKL-9.1 on an 8-way dual Opteron system. The dashed curve re-
ports the raw performance of the block algorithm with dynamic scheduling, i.e., the
performance as computed with the true operation count 5/2n2(m − n/3).

Fig. 4. Comparison between the performance of the block algorithm with dynamic
scheduling using MKL-9.1 on an 2-way quad Clovertown system. The dashed curve
reports the raw performance of the block algorithm with dynamic scheduling, i.e., the
performance as computed with the true operation count 5/2n2(m − n/3).
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completes the QR factorization in less time than the block algorithm because of
the lower flop count. Note that the actual execution rate of the block algorithm
for QR factorization with dynamic scheduling (i.e., the dashed curves) is always
higher than that of the LAPACK algorithm with multithreaded BLAS even for
low numbers of cores. The actual performance of the block algorithm, even if
considerably higher than that of the fork-join one, is still far from the peak
performance of the systems used for the measures. This is mostly due to two
factors: the nature of the BLAS operations involved and the performance of
BLAS routines on small size blocks.

4 Conclusions

By adapting known algorithms for updating the QR factorization of a matrix, we
have derived a fine-granularity implementation scheme of the QR factorization for
multicore architectures based on dynamic scheduling and block data layout. Al-
though the proposed algorithm is performing 25% more FLOPS than the regular
algorithm, the gain in flexibility allows an efficient dynamic scheduling which en-
ables the algorithm to scale almost perfectly when the number of cores increases.
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